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Abstract
Polarons confined in rectangular and parabolic quantum wells are studied within
the framework of the fractional-dimensional space approach. In this scheme, the
real confined ‘polaron plus quantum well’ system is mapped into an effective
fractional-dimensional bulk in which the polaron behaves in an unconfined
fashion, and the fractional dimension is essentially related to the degree of
confinement of the actual system. Analytical expressions allowing a very simple
estimation of the corresponding polaron corrections are found. The fractional-
dimensional theoretical results are shown to be in reasonable agreement with
previous more detailed calculations.

1. Introduction

In the last decade, a considerable amount of work has been devoted to the study of artificial
low-dimensional semiconductor systems, not only because of the physics underlying various
properties of these systems but also due to their importance for potential applications in a
wide range of electronic and optoelectronic devices. In particular, the electron–LO-phonon
interaction leading to the polaron effect may be significantly modified by the confinement (e.g.
it is well established that both the binding energy and the effective mass of the polaron increase
as the confinement increases). These modifications in the polaron effect can strongly influence
the optical and transport properties of the heterostructures. The polaron has therefore been the
subject of intensive investigations for a long time.

At earlier stages, polarons in bulk material were investigated and a wide variety of
mathematical techniques were applied to the study of the polaron problem (see for instance [1]
and [2]). The polaron effects in semiconductor heterostructures are, however, quite different
from those in bulk materials. In GaAs–AlxGa1−xAs quantum well (QW) systems, for instance,
there are a variety of phonon modes (e.g. bulk-like phonon modes [3], slab modes [4], interface
or surface modes [3], and coupled modes [5]) arising from the presence of the heterointerfaces.
Consequently, a rigorous treatment of the electron–phonon interaction in such heterostructures
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requires the consideration of all these modes. The polaron problem in QWs becomes then too
complicated [6–11], and even the simplest models cannot be resolved analytically. The purpose
of the present paper is to formulate a simplified model for estimating, analytically, the polaron
corrections in QWs, with reasonable accuracy.

Of particular interest to the present work is the original approach proposed by He [12,13].
In this approach the anisotropic (or confined) interactions in real three-dimensional space are
treated as isotropic (or unconfined) ones in an effective fractional-dimensional environment
whose dimension constitutes a measure of the degree of anisotropy (or confinement) of the
actual physical system. The main advantage of this approach lies in the fact that all the
information about a perturbation (confinement or anisotropy) can be introduced in a single
value—the dimensionality. Thus, given this simple value, the real system can be modelled in a
simple analytical way. In the last few years, the fractional-dimensional space approach has been
successfully used in modelling exciton [14–19], magnetoexciton [20, 21], biexciton [22, 23],
and impurity states [18,24,25] in semiconductor heterostructures. The Stark shift of excitonic
complexes [26] and the refractive index in QW structures [27] have also been studied within
the fractional-dimensional space approach.

In this paper we extend the fractional-dimensional space formalism to the case of polarons
confined in rectangular and parabolic QWs. Thus, the real confined ‘polaron + QW’ system
is mapped into an effective fractional-dimensional bulk in which the polaron behaves in
an unconfined fashion, and the fractional dimension is essentially related to the degree of
confinement of the actual system. The paper is organized as follows. In section 2, the Fröhlich-
like Hamiltonian describing the electron–LO-phonon interaction in a fractional-dimensional
space is presented. The corresponding fractional-dimensional polaronic corrections in the
weak-coupling limit are obtained in section 3, within second-order perturbation theory. In
section 4, the polaron binding energy and effective mass in a rectangular QW are obtained for
varying well width. The results are compared with the results reported by other researchers.
In section 5, the polaron problem in a parabolic QW is considered and a comparison of our
results with calculations by other authors is shown. Finally, conclusions are summarized in
section 6.

2. The Fröhlich-like Hamiltonian in fractional-dimensional spaces

The electron–phonon interactions in D dimensions have been considered by several
authors [28–30]. Peeters et al proposed a Fröhlich-like Hamiltonian depending on the
dimension of the space (see [28]). Although the procedure used by these authors in the
derivation of the electron–phonon interaction Hamiltonian is valid only for integer values of the
dimension1, their results give correct expressions when we extend the dimension to non-integer
values, as we will show in the present section. More recently, Thilagam has introduced an a
priori definition of the Hamiltonian describing the exciton–phonon interaction in fractional-
dimensional spaces (see [30]). This definition implies a Fröhlich-type Hamiltonian for the
electron–phonon interaction whose coupling coefficient

Cq = −ih̄ωLO

(
4πα

qD−1VD

)1/2(
h̄

2mωLO

)1/4

, VD = πD/2

�[1 +D/2]
|r|D, (1)

1 The authors used, basically, the properties of vectorial spaces in finding the coupling coefficient of the electron–
phonon interaction. However, the fractional-dimensional space is not, in general, a vector space [31].
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in spite of the statements of the author, cannot recover the well known two-dimensional
limit [32]

C2D
q = − ih̄ωLO

q1/2

(
2πα

S

)1/2(
h̄

2mωLO

)1/4

, S = area, (2)

whenD = 2. In the equations above and in what follows,m, α, andωLO represent the electron
effective mass, the Fröhlich constant, and the bulk LO-phonon limiting frequency, respectively.

In this paper we will reconsider the model proposed in [28] for the electron–phonon
interaction in an n-dimensional space. This model gives the well known results in both the
exact two-dimensional and three-dimensional limits, and can be straightforwardly generalized
to the case of non-integer values of the dimension of the space.

We recall that the fractional-dimensional space is not, in general, a vector space [31].
However, one can trace a certain number of mutually perpendicular lines. A remarkable fact
is that, for non-integer values of the dimension D of the space, the maximal number s of
mutually perpendicular lines can even be greater than D (see [31]). Of course, when D is
an integer we have D = s. The set of s mutually perpendicular lines can then be regarded
as a set of orthogonal axes along which we can define certain pseudocoordinates. Thus, it is
possible to describe the position of the electron by introducing an s-component pseudovector
r. In the same way we can define the wave pseudovectors q and k corresponding to the
phonons and the electron, respectively. The Hamiltonian of the electron–phonon interaction
in a fractional-dimensional space can then be written as

Ĥe−ph =
∑

q

[Cq(D)b̂q exp(iq · r) + C∗
q(D)b̂

†
q exp(−iq · r)], (3)

whereb†
q (bq) is the creation (annihilation) operator for a phonon with wave pseudovector q, and

Cq(D) is the fractional-dimensional coupling coefficient of the electron–phonon interaction.
By now considering that the basic interaction characterizing the electron motion in D

dimensions remains Coulomb-like (∼1/r) [28] we get

Cq(D) = −ih̄ωLO

(
FD(q)α

VD

)1/2(
h̄

2mωLO

)1/4

, (4)

where

FD(q) = (2π)D/2
∫ ∞

0
dr rD−1(qr)1−D/2JD/2−1(qr)

1

r
(5)

is the fractional-dimensional Fourier transform [31] of the Coulomb-like potential. In the
equations above, VD is the fractional-dimensional volume of the crystal to which Born–Von
Karman periodicity conditions are applied and the Jν(x) represent the Bessel functions. Notice
that by introducing the fractional-dimensional transform we avoid the use of any property
concerning vector spaces.

After the corresponding integration in equation (5) we obtain from equation (4) the
coupling coefficient

Cq(D) = −ih̄ωLO

[
(4π)(D−1)/2�[(D − 1)/2]α

qD−1VD

]1/2(
h̄

2mωLO

)1/4

, (6)

characterizing the electron–phonon interaction in the fractional-dimensional bulk. It is worth
remarking that, although the treatment used by the authors in [28] is valid only for integer values
of the dimension, if we extend the values of the dimensional parameter in their results to non-
integer values, we obtain an expression for the coupling coefficient that coincides precisely
with equation (6).
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3. The fractional-dimensional polaronic corrections

We recall that the purpose of the present work is to model the polaron effect in real systems
such as semiconductor QWs. Often heterostructures of this kind are made out of weak polar
semiconductors (e.g. GaAs–AlxGa1−xAs). Therefore we will consider in our study that the
Fröhlich constant is small (α � 1) and, consequently, we will deal only with the weak-coupling
case.

The electron self-energy due to the electron–LO-phonon interaction in the weak-coupling
approximation can be calculated within second-order perturbation theory. The energy of a
fractional-dimensional polaron in the ground state is given by

E = E
(0)
k +

∑
k′

|〈1k′ , 0k, 1q|Ĥe−ph|0k′ , 1k, 0q〉|2
Ēk − Ēk′

, (7)

where

Ēk = 〈0q, 1k, 0k′ |Ĥ (0)|0k′ , 1k, 0q〉 = E
(0)
k , (8)

and

Ēk′ = 〈1k′ , 0k, 1q|Ĥ (0)|1q, 0k, 1k′ 〉 = E
(0)
k′ + h̄ωLO (9)

are the unperturbed electron energies corresponding to the initial and the intermediate states,
respectively.

In the equations above, |0k′ , 1k, 0q〉 denotes the initial state with one electron in the state
k, zero electrons in the state k′, and zero phonons. The assumption of absence of phonons in
the initial state is usually fulfilled for low temperatures. The interpretation of the intermediate
states |1q, 0k, 1k′ 〉 is analogous to that of the initial states.

Taking into account that the free-electron motion in a fractional-dimensional space can be
described by a plane wave [31], after the corresponding integration over the volume VD in the
matrix elements present in equation (7) we get

E − E
(0)
k = 2m

h̄2

∑
k′,q

|Cq(D)|2|�[k′ − k + q]|2
k2 − k′2 − R−2

p

, (10)

where Rp = √
2mωLO/h̄ is the polaron radius and �(x) represents the Kronecker delta

function (�(x) = 1 if x = 0, and �(x) = 0 if x �= 0). This function, as in the integer-
dimensional bulk case, is an expression of the momentum conservation law.

Now approximating the summation over q in equation (10) by an integral∑
q

· · · ≈ VD

(2π)D
2π(D−1)/2

�[(D − 1)/2]

∫ ∞

0

∫ π

0
· · · qD−1(sin θ)D−2 dq dθ, (11)

and following the standard procedures, we obtain from equation (10) the following expression
for the polaron energy:

E = −�E +
h̄2k2

2m∗ , (12)

where

�E = g1(D)αh̄ωLO (13)

is the polaron binding energy, and

m∗ = m

1 − g2(D)α
(14)

is the polaron effective mass.
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In equations (13) and (14) the D-dependent functions g1(D) and g2(D) are given by

g1(D) =
√
π

2

�[(D − 1)/2]

�[D/2]
, (15)

and

g2(D) =
√
π

4

�[(D − 1)/2]

D�[D/2]
, (16)

respectively. In equations (11), (15), and (16) �(x) represents the Gamma function.
The set of equations (12)–(16) determines the polaronic corrections in a fractional-

dimensional bulk. It is straightforward to check that these equations recover the well known
forms in both the exact two- and three-dimensional limits.

4. Polaron in a rectangular quantum well

In the present section we will study the behaviour of the polaron confined in a rectangular QW,
within the framework of the fractional-dimensional space approach. In this approach the real
three-dimensional ‘polaron + QW’ system will be treated as a polaron in an effective fractional-
dimensional bulk, whose dimension constitutes a measure of the degree of confinement of
the real system. Thus, given this simple value—the dimensionality—we can obtain the
polaron corrections from equations (12) and (14) in a very simple way. The question arising
is then that of how to calculate the appropriate value of the dimensional parameter. At
earlier stages, Mathieu and co-workers introduced a heuristical model for calculating the
appropriate dimensionality in the case of confined excitons. Although their method has no
strict physical substantiation it does provide a surprisingly accurate parametrization of the
exciton binding energy in rectangular QWs [14, 15], QW wires [16], and superlattices [17].
More recently de Dios-Leyva and co-workers [18] have developed a systematic procedure
for determining the dimensionality of the effective medium in modelling exciton and impurity
states in QWs [18,19], multiple QWs [21,24], and superlattices [25]. For the sake of simplicity,
however, we will consider in the present paper a procedure analogous to that in [14–17].

Following Christol et al [16], since the dimensional parameter is a measure of the degree
of confinement of the real system embedded in a three-dimensional Euclidean space, it can be
determined by

D = βx + βy + βz, (17)

where βx , βy , and βz are the ratios of the homothetic reduction of the unit length for the
directions x, y, and z in the real physical space, respectively.

In the case of a rectangular QW grown along the z-direction, the motion in the (x, y) plane
is free and we get βx = βy = 1. The ratio of the homothetic reduction of the unit length in the
z-direction produced by the confinement effects can be calculated through the relation

βz = 1 − exp[−ξ ], (18)

where

ξ = length of confinement

effective characteristic length of interaction
. (19)

Equations (17)–(19) have been successfully used in modelling exciton states in
semiconductor QWs [14–17]. In the case of an exciton confined in an infinitely deep QW
we have, for instance, ξ = Lw/d [14], where Lw represents the well width and d = 2 a0 is the
effective Bohr diameter of the three-dimensional exciton. The dimensionality is then given by
D = 3 − exp[−ξ ].
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Consider now a polaron confined in an infinitely deep rectangular QW. In this case, the
effective characteristic length of the electron–phonon interaction is the polaron diameter

d = 2Rp = 2

√
h̄

2mωLO
. (20)

Therefore, the dimensional parameter can be calculated through the simple relation

D = 3 − exp

[
− Lw

2Rp

]
, (21)

where Rp is the polaron radius.
In the real system the polaron ground state can be written as [6, 10]

E = −�E + EKEpol + Ez (22)

where �E, EKEpol , and Ez = h̄2π2/(2mL2
w) represent the polaron contribution to the binding

energy, the polaron kinetic energy, and the first energy level for the electron motion in the
z-direction, respectively. Now, we note that if we take the zero of the energy scale at the
bottom of the first conduction subband in the well, we can rewrite equation (22) in a form quite
similar to equation (12):

E = −�E + EKEpol . (23)

Thus, by defining the energy band gap in the effective fractional-dimensional system (EDg ) as

EDg = Eg + Ez (24)

whereEg represents the energy band gap of the actual system, and by comparing equations (12)
and (23), the polaron binding energy due to the electron–phonon interaction (�E) and the
polaron effective mass (m∗) can be estimated through the set of equations (13)–(16) and (21).
We note that, in fact, the quantity�E can also be interpreted as a shift in the band-gap energy.
That is why sometimes in the literature authors refer to �E as the energy gap shift due to the
electron–phonon interaction. In order to be consistent with the terminology used by different
authors when comparing our results with their calculations, in what follows we will refer to the
polaron contribution to the binding energy (�E) as the polaron energy (gap) shift or, simply,
the polaron binding energy, generally. The numerical results are displayed in figures 1 and 2.
In obtaining figures 1 and 2 we have used the same material parameters as Thilagam and Singh
in [10] and Hai et al in [6], respectively.

The well width dependence of the fractional-dimensional polaron energy shift (�E)
compared with the corresponding calculations by Thilagam and Singh (TS model) [10] is
displayed in figure 1(a). In both cases the polaron energy shift decreases as the well width
increases. The same monotonic bahaviour can be observed in figure 1(b) for the well
width dependence of the increase in polaron effective mass. From figure 1, one may notice
the existence of a qualitative and a reasonably quantitative agreement between the present
fractional-dimensional results and the calculations within the TS model. The discrepancy in
the energy shift results between the two calculations is less than 0.2 meV for the whole well
width range. On the other hand, the maximal discrepancy for the increase of the polaron
effective mass is about 0.5% at Lw ≈ 25 Å. In the wide well width region (Lw � 150 Å) our
results practically coincide with those of the TS approach.

The fractional-dimensional parameter as a function of the well width is plotted in
figure 1(c). A transition between the two-dimensional limit (for an infinitely narrow QW)
and the three-dimensional limit (for wide QWs) is clearly shown.

In figure 2(a) we present a comparison between the well width dependence of the
fractional-dimensional polaron binding energy and the corresponding results obtained from
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Figure 1. Well width dependence of the polaron energy shift (a), the increase in polaron mass (b),
and the corresponding fractional dimension (c), for a polaron confined in an infinite rectangular
QW. Full curves correspond to the present fractional-dimensional results and the dashed curves to
calculations by Thilagam and Singh [10].

the Hai, Peeters and Devreese (HPD) model [6]. An excellent agreement between our results
and those of the HPD model for three-dimensional bulk LO-phonon modes can be clearly
appreciated. Notice that in figure 2(a) the polaron binding energy is given in units of the two-
dimensional polaron binding energy limit (�E2D = απh̄ωLO/2), i.e.�Er = �E/�E2D . The
overall agreement between our results and the calculations within the HPD model can also be
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appreciated in figure 2(b) for the well width dependence of the polaron effective mass. Here the
polaron effective mass has also been referred to its two-dimensional value (�m2D = απm/8),
i.e. �mr = �m/�m2D .

The fractional dimension corresponding to the results shown in figures 2(a) and (b) is
displayed in figure 2(c) as a function of the well width. Again the transition between the
two-dimensional limit and the three-dimensional limit when the well width increases is quite
apparent. In fact, for Lw � 400 Å the effective system becomes practically three dimensional.

It is worth noting that our results for the polaron corrections are, in general, greater
than those from the TS model (see figure 1), but smaller than the results obtained within the
HPD approach (see figure 2). Consequently, the discrepancies between the TS and the HPD
approaches are greater than those between our fractional-dimensional model and the TS (or
the HPD) approach.

5. Polaron in a parabolic quantum well

Consider now a polaron confined in a parabolic QW determined by a parabolic potential
extending from z = −∞ to +∞. The confining potential can be written as

V (z) = m

2
.2z2, (25)

where . represents the confinement frequency.
In order to describe the real system ‘polaron + parabolic QW’ via the effective fractional-

dimensional space approach, we have to calculate the appropriate value of the dimension of
the effective environment in which the confined polaron is treated as an unconfined polaron.
The dimensional parameter can be now calculated through a straightforward extension of the
results obtained in the previous section. While the effective characteristic length of interaction
remains the polaron diameter (2Rp), the obvious length of confinement in the present case is
the width l corresponding to the range of classical motion in the parabolic potential, i.e.

l = 2

√
h̄

m.
. (26)

The dimension can be then calculated as

D = 3 − exp

[
− l

2Rp

]
. (27)

Following the same procedures as in the previous section, the polaronic corrections can
be calculated. We remark, however, that in the present case the conduction subbands are
determined by the Landau levels Ezn = h̄.(n + 1/2). Thus, for the ground state we have to
take Ez = h̄./2 in equation (24).

The polaron binding energy as a function of the inverse parabolic well confinement
frequency ωLO/. is displayed in figure 3(a), where we compare our results with the
calculations by Hai et al [6]. One notices that the fractional-dimensional polaron binding
energy is in reasonable agreement with the results in [6]. The maximal discrepancy for the
polaron binding energy is about 6.2% (0.23 meV).

Figure 3(b) compares the fractional-dimensional polaron effective mass, for varying
inverse parabolic well confinement frequency, with the corresponding calculations by Hai
et al [6]. One may notice that the agreement of our results and those obtained in [6] is quite good.

Notice that both the polaron binding energy and the polaron effective mass plotted in
figure 3 are referred to their two-dimensional corresponding values, as in figure 2.

The dependence of the dimensional parameter on ωLO/. is shown in figure 3(c). The
fractional dimension starts from the value D = 2 for an infinite parabolic well confinement
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Figure 2. Well width dependence of the polaron binding
energy (a), the polaron effective mass (b), and the
corresponding fractional dimension (c), for a polaron
confined in an infinite rectangular QW. Both the polaron
binding energy and effective mass are referred to their
corresponding two-dimensional values. Full curves
correspond to the present fractional-dimensional results
and the dashed curves to calculations by Hai et al
[6].

Figure 3. Inverse parabolic well confinement frequency
dependence of the polaron binding energy (a), the polaron
effective mass (b), and the corresponding fractional
dimension (c), for a polaron confined in a parabolic
QW. Both, the polaron binding energy and effective
mass are referred to their corresponding two-dimensional
values. Full curves correspond to the present fractional-
dimensional results and the dashed curves to calculations
by Hai et al [6].
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frequency (. → ∞, (ωLO/.) → 0). As . decreases, the confinement becomes more and
more weak, leading to an increase in the dimensionality that reaches the valueD = 3 at. → 0.

6. Conclusions

In conclusion, the fractional-dimensional space approach was extended to the study of polarons
confined in rectangular and parabolic QWs. In this approach, the real confined ‘polaron + QW’
system is modelled in an effective fractional-dimensional environment in which the polaron
remains unconfined, and the fractional dimension is a measure of the degree of confinement of
the real system. Analytical expressions for the corresponding polaron corrections were found.
These expressions allow us to estimate, with reasonable accuracy, the polaron binding energy
and effective mass in a very simple way, avoiding the tedious and complicated calculations
arising in the standard treatments.
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